Orbital control on carbon cycle and oceanography in the mid-Cretaceous greenhouse

by Martino Giorgioni, Helmut Weissert, Stefano M. Bernasconi, Peter A. Hochuli, Rodolfo Coccioni, and Christina E. Keller

Paleoceanography

27, PA1204, doi:10.1029/2011PA002163.

ABSTRACT:  We established a new high-resolution carbonate carbon isotope record of the Albian interval of the Marne a Fucoidi Formation (Central Apennines, Italy), which was deposited on the southern margin of the western Tethys Ocean. Bulk carbonate sampled with 10–15 cm spacing was used for the construction of a continuous carbon isotope curve through the Albian stage. Spectral analyses reveal prominent 400 kyr cyclicity in the δ13C curve, which correlates with Milankovitch long eccentricity changes. Cycles occurring in our record resemble those observed in several Cenozoic δ13C records, suggesting that a link between orbital forcing and carbon cycling existed also under mid-Cretaceous greenhouse conditions. Based on comparisons with Cenozoic eccentricity-carbon cycle links we hypothesize that 400 kyr cycles in the mid-Cretaceous were related to a fluctuating monsoonal regime, coupled with an unstable oceanic structure, which made the oceanic carbon reservoir sensitive to orbital variations. In the Tethys these oceanographic conditions lasted until the Late Albian, and then were replaced by a more stable circulation mode, less sensitive to orbital forcing.

Leave a Reply